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CONVERSION FACTORS

Length

1 in. = 2.54 cm 

1 m = 39.4 in. = 3.28 ft

1 mi = 5280 ft = 1609 m

1 km = 0.621 mi

1 angstrom 1Å2 = 10-10 m

1 light-year 1ly2 = 9.46 * 1015 m

Volume

1 liter = 1000 cm3

1 gallon = 3.79 liters

Speed

1 mi>h = 1.61 km>h = 0.447 m>s

Mass

1 atomic mass unit 1u2 = 1.660 * 10-27 kg

(Earth exerts a 2.205-lb force on an object with 1 kg mass)

Force

1 lb = 4.45 N

Work and Energy

1 ft # lb = 1.356 N # m = 1.356 J

1 cal = 4.180 J

1 eV = 1.60 * 10-19 J

1 kWh = 3.60 * 106 J

Power

1 W = 1 J>s = 0.738 ft # lb>s

1 hp 1U.S.2 = 746 W = 550 ft # lb>s

1 hp 1metric2 = 750 W

Pressure

 1 atm = 1.01 * 105 N>m2 = 14.7 lb>in2

 = 760 mm Hg

1 Pa = 1 N>m2

PHYSICAL CONSTANTS

Gravitational coefficient on Earth g 9.81 N>kg

Gravitational constant G 6.67 * 10-11 N # m2>kg2

Mass of Earth 5.97 * 1024 kg

Average radius of Earth 6.38 * 106 m

Density of dry air (STP) 1.3 kg>m3

Density of water (4 °C) 1000 kg>m3

Avogadro’s number NA 6.02 * 1023 particles (g atom)

Boltzmann’s constant kB 1.38 * 10-23 J>K

Gas constant R 8.3 J>mol # K

Speed of sound in air (0°) 340 m>s

Coulomb’s constant kC 9.0 * 109 N # m2>C2

Speed of light c 3.00 * 108 m>s

Elementary charge e 1.60 * 10-19 C

Electron mass me 9.11 * 10-31 kg = 5.4858 * 10-4 u

Proton mass mp 1.67 * 10-27 kg = 1.00727 u

Neutron mass mn 1.67 * 10-27 kg = 1.00866 u

Planck’s constant h 6.63 * 10-34 J # s

POWER OF TEN PREFIXES

Prefix Abbreviation Value

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Hecto h 102

Deka da 101

Deci d 10-1

Centi c 10-2

Milli m 10-3

Micro μ 10-6

Nano n 10-9

Pico p 10-12

Femto f 10-15

SOME USEFUL MATH

Area of circle (radius r)  pr2

Surface area of sphere  4pr2

Volume of sphere 
4
3

 pr3

Trig definitions:
sin u = (opposite side)>(hypotenuse)
cos u = (adjacent side)>(hypotenuse)
tan u = (opposite side)>(adjacent side)

Quadratic equation:

0 = ax2 + bx + c,

where x =
-b { 2b2 - 4ac

2a
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Help students learn physics  
by doing physics

Dear Colleague,

Welcome to the second edition of our textbook College Physics: Explore and Apply and its  
supporting materials (MasteringTM Physics, the Active Learning Guide (ALG), and our Instructor’s 
Guide)—a coherent learning system that helps students learn physics by doing physics!

Experiments, experiments…  Instead of being presented physics as a static set of established 
concepts and mathematical relations, students develop their own ideas just as physicists 
do: they explore and analyze observational experiments, identify patterns in the data, and 
propose explanations for the patterns. They then design testing experiments whose outcomes 
either confirm or contradict their explanations. Once tested, students apply explanations and 
relations for practical purposes and to problem solving.

A physics tool kit  To build problem-solving skills and confidence, students master proven 
visual tools (representations such as motion diagrams and energy bar charts) that serve as 
bridges between words and abstract mathematics and that form the basis of our overarching 
problem-solving strategy. Our unique and varied problems and activities promote 21st-century 
competences such as evaluation and communication and reinforce our practical approach with 
photo, video, and data analysis and real-life situations.

A flexible learning system  Students can work collaboratively on ALG activities in class 
(lectures, labs, and problem-solving sessions) and then read the textbook at home and solve 
end-of-chapter problems, or they can read the text and do the activities using Mastering 
Physics at home, then come to class and discuss their ideas. However they study, students will 
see physics as a living thing, a process in which they can participate as equal partners.

Why a new edition?  With a wealth of feedback from users of the first edition, our own 
ongoing experience and that of a gifted new co-author, and changes in the world in general 
and in education in particular, we embarked on this second edition in order to refine and 
strengthen our experiential learning system. Experiments are more focused and effective, our 
multiple-representation approach is expanded, topics have been added or moved to provide 
more flexibility, the writing, layout, and design are streamlined, and all the support materials 
are more tightly correlated to our approach and topics.

Working on this new edition has been hard work, but has enriched our lives as we’ve explored 
new ideas and applications. We hope that using our textbook will enrich the lives of your 
students!

Eugenia Etkina

Gorazd Planinsic

Alan Van Heuvelen
“This book made me think deeper 
and understand better.”

—�student at Horry Georgetown Technical 
College
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A unique and active learning approach 
promotes deep and lasting 

UPDATED! 
Observational 
Experiment 
Tables and Testing 
Experiment Tables: 
Students must make 
observations, analyze 
data, identify patterns, 
test hypotheses, and 
predict outcomes. 
Redesigned for clarity 
in the second edition, 
these tables encourage 
students to explore 
science through active 
discovery and critical 
thinking, constructing 
robust conceptual 
understanding.

NEW! Digitally 
Enhanced Experiment 
Tables now include 
embedded videos in the 
Pearson eText for an 
interactive experience. 
Accompanying questions 
are available in Mastering 
Physics to build skills 
essential to success in 
physics.
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conceptual understanding of physics 
and the scientific process

EXPANDED! Experiment videos and photos created 
by the authors enhance the active learning approach. 
Approximately 150 photos and 40 videos have been added to the 
textbook, as well as embedded in the Pearson eText, and  
scores more in the Active Learning Guide (ALG).

“I like that the experiment tables... 
explain in detail why every step 
was important.”

—student at Mission College
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A wealth of practical and consistent 
guidance, examples, and opportunities 

A four-step problem-solving 
approach in worked examples 
consistently uses multiple representations 
to teach students how to solve complex 
physics problems. Students follow 
the steps of Sketch & Translate, 
Simplify & Diagram, Represent 
Mathematically, Solve & 
Evaluate to translate a problem 
statement into the language of physics, 
sketch and diagram the problem, represent 
it mathematically, solve the problem, and 
evaluate the result.

Physics Tool Boxes focus on a 
particular skill, such as drawing a motion 
diagram, force diagram, or work-energy 
bar chart, to help students master the key 
tools they will need to utilize throughout 
the course to analyze physics processes and 
solve problems, bridging real phenomena 
and mathematics.

“It made me excited to 
learn physics! It has a 
systematic and easy-to-
understand method for 
solving problems.”

—student at State University of 
West Georgia
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for practice help develop confidence 
and higher-level reasoning skills

NEW! Problem types 
include multiple choice 
with multiple correct 
answers, find-a-pattern 
in data presented in a 
video or a table, ranking 
tasks, evaluate statements/ 
claims/explanations/ 
measuring procedures, 
evaluate solutions, design 
a device or a procedure 
that meets given criteria, 
and linearization problems, 
promoting critical thinking 
and deeper understanding.

“It helps break down the 
problems, which makes them 
look less daunting when 
compared to paragraphs 
of explanations. It is very 
straightforward.”

—student at Case Western Reserve 
University
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Pedagogically driven design and 
content changes 

NEW! A fresh and 
modern design with a 
more transparent hierarchy 
of features and navigation 
structure, as well as an 
engaging chapter opener 
page and streamlined 
chapter summary, result 
in a more user-friendly 
resource, both for learning 
and for reference.

REVISED! Streamlined 
text, layout, and 
figures throughout the 
book enhance the focus on 
central themes and topics, 
eliminating extraneous 
detail, resulting in over 
150 fewer pages 
than the first edition and 
allowing students to study 
more efficiently.

308  CHAPTER 10 Vibrational Motion

Summary
Vibrational motion is the repetitive movement of 
an object back and forth about an equilibrium  
position. This vibration is due to the restoring 
force exerted by another object that tends to  
return the first object to its equilibrium position.  
An object’s maximum displacement from equilib-
rium is the amplitude A of the vibration. Period T  
is the time interval for one complete vibration, and 
frequency ƒ is the number of complete vibrations 
per second (in hertz). The frequency is the inverse 
of the period. (Section 10.1)

x

m

0

1A

t 5 0
t 5 T

k 2A

L

m

y

t 5 0

x

t 5 T

0 1A2A

Object at end of spring obeying Hooke’s law:

 FRestoring x = -kx Eq. (10.5)

 T = 2pAm
k
=

1
ƒ

 Eq. (10.7)

Simple pendulum:

 FRestoring x = - amg

L
bx Eq. (10.11)

 T = 2pAL
g
=

1
ƒ

 Eq. (10.12)

Simple harmonic motion is a mathematical 
model of vibrational motion when position x, 
velocity v, and acceleration a of the vibrating ob-
ject change as sine or cosine functions with time. 
(Section 10.2)

x

t
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 x = A cosa 2p
T

 tb  Eq. (10.2)

 vx = - a 2p
T
bA sina 2p

T
 tb  Eq. (10.3)

 ax = - a 2p
T
b

2

 A cosa 2p
T

 tb  Eq. (10.4)

The energy of a spring-object system vibrating 
horizontally converts continuously from elastic 
potential energy when at the extreme positions to 
maximum kinetic energy when passing through the 
equilibrium position to a combination of energy 
types at other positions. (Section 10.3)

The energy of a pendulum-Earth system  
converts continuously from gravitational potential  
energy when it is at the maximum height of a 
swing to kinetic energy when it is passing through 
the lowest point in the swing to a combination of 
energy types at other positions. (Section 10.5)

Us K5 1K

Other xObject at end
of spring:

x 5 0x 5 {A
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0

Simple
pendulum: Ug K5 Ug

At other places0{A

5 1K

0

E = 1
2 kx2 + 1

2 mv2

E = 1
2 kA2

   = 1
2 mvmax

2  Eq. (10.9)

E = mgy + 1
2 mv2

E = mgymax

   = 1
2 mvmax

2

Resonant energy transfer occurs when the  
frequency of the variable external force driving  
the oscillations is close to the natural frequency 
ƒ0 of the vibrating system. (Section 10.8)

0
f

A

f0
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enhance ease of use for students  
and instructors alike

NEW! Integration of vector arithmetic into early chapters helps 
students develop vector-related skills in the context of learning physics. Earlier 
placement of waves and oscillations allows instructors to teach these 
topics with mechanics if preferred. Coverage with optics is also possible.

NEW, REVISED,  
and EXPANDED! 
Topics include 
capacitors, AC circuits, 
LEDs, friction, 2-D 
collisions, energy, bar 
charts for rotational 
momentum and 
nuclear energy, 
ideal gas processes, 
thermodynamic engines, 
semiconductors, velocity 
selectors, and spacetime 
diagrams in special 
relativity.

(b)

(c)

(a)

Variable emf
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to 2, short to 1
(“wrong” direction)

Long lead connected
to 1, short to 2
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FIGURE 19.14 A green LED. The electric  
circuit in (b) is used to collect the I-versus-DV
data  plotted in (c).
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FIGURE 26.11 World lines for two objects 
and two light beams drawn on a spacetime 
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A flexible learning system adapts 
to any method of instruction 

REVISED! The Active Learning Guide aligns 
with the textbook’s chapters and supplements the 
knowledge-building approach of the textbook with 
activities that provide opportunities for further 
observation, testing, sketching, and analysis as well as 
collaboration, scientific reasoning, and argumentation. 
The Active Learning Guide can be used in class for 
individual or group work or assigned as homework and 
is now better integrated with the text. Now available 
via download in the Mastering Instructor Resource 
Center and customizable in print form via Pearson 
Collections.

The Instructor’s Guide provides key pedagogical 
principles of the textbook and elaborates on the 
implementation of the methodology used in the 
textbook, providing guidance on how to integrate the 
approach into your course.

“It is much easier to understand 
a concept when you can see it 
in action, and not just read it.”

—student at San Antonio College

Chapter 2 Kinematics: Motion in One Dimension	 2-23		

Etkina,	Brookes,	Planinsic,	Van	Heuvelen	COLLEGE	PHYSICS		Active	Learning	Guide,	2/e	©	2019	Pearson	Education,	Inc.	

2.9.9	Evaluate	the	solution	
Class: Equipment per group: whiteboard and markers 

Discuss with your group: Identify any errors in the proposed solution to the following problem and 
provide a corrected solution if there are errors.  

Problem: Use the graphical representation of motion to determine how far the object travels until it 
stops. 

 

 

 

 

Proposed solution The object was at rest for about 5 seconds, then started moving in the negative 
direction and stopped after about 9 seconds. During this time its position changed from 30 m to – 10 
m, so the total distance that it traveled was 40 m. 

2.9.10	Observe	and	analyze	
Class: Equipment per group: whiteboard and markers 

Collaborate together with your group to figure this out: The figure below shows long exposure photos 
of two experiments with a blinking LED that was fixed on a moving cart. In both cases the cart was 
moving from right to left. The duration of the ON and OFF time for LED is 154 ms and the length of 
the cart is 17 cm.  a) Specify the coordinate system and draw a qualitative velocity-time graph for the 
motion of the cart in both experiments; b) estimate the speed of the cart in the first experiment. Both 
photos were obtained from the same spot and with the same settings. Indicate any assumptions that 
you made. 

 

 

			vx	
(m/s)	

t	(s)	
10	

1	
0	

Etkina/Planinsic/van Heuvelen 2e Instructor’s Guide © 2019 Pearson Education, Inc.      2-1 

Kinematics: 
Motion in One 
Dimension 

In Chapter 2, students will learn to describe motion using sketches, motion diagrams, 
graphs, and algebraic equations. The chapter subject matter is broken into four parts: 

 I. What is motion and how do we describe it qualitatively? 
 II. Some of the quantities used to describe motion and a graphical description  

of motion 
 III. Use of the above to describe constant velocity and constant acceleration 

motion 
 IV. Developing and using the skills needed to analyze motion in real processes 

For each part, we provide examples of activities that can be used in the classroom, 
brief discussions of why we introduce the content in a particular order and use of 
these activities to support the learning, and common student difficulties. 
 
 
 
 
 
 
 
 
 
 

Chapter subject 
matter 

Related 
textbook 
section ALG activities 

End-of-chapter 
questions and 
problems Videos 

What is motion 
and how do we 
describe it 
qualitatively? 

2.1, 2.2 2.1.1–2.1.6, 
2.2.1–2.2.4 

Problems 1, 3 OET 2.1 

 

2 

A01_ETKI1823_02_SE_FM.indd   8 01/11/17   5:24 PM



and provides tools for easy 
implementation

NEW! Ready-to-Go Teaching Modules created for and by instructors 
make use of teaching tools for before, during, and after class, including new 
ideas for in-class activities. The modules incorporate the best that the text, 
Mastering Physics, and Learning Catalytics have to offer and guide instructors 
through using these resources in the most effective way. The modules can be 
accessed through the Instructor Resources area of Mastering Physics and as  
pre-built, customizable assignments.
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Build a basic understanding of physics principles and math skills

NEW! The Physics Primer 
relies on videos, hints, and 
feedback to refresh students’ math 
skills in the context of physics 
and prepare them for success in 
the course. These tutorials can be 
assigned before the course begins 
as well as throughout the course 
as just-in-time remediation. The 
primer ensures students practice 
and maintain their math skills, 
while tying together mathematical 
operations and physics analysis.

Mastering Physics

Interactive Animated Videos provide an engaging overview of key 
topics with embedded assessment to help students check their understanding 
and to help professors identify areas of confusion. Note that these videos are 
not tied to the textbook and therefore do not use the language, symbols, 
and conceptual approaches of the book and ALG. The authors therefore 
recommend assigning these videos after class to expose students to different 
terminology and notation that they may come across from other sources.

Dynamic Study 
Modules (DSMs) 
help students study 
effectively on their 
own by continuously 
assessing their activity 
and performance in real 
time and adapting to their 
level of understanding. 
The content focuses on 
definitions, units, and 
the key relationships 
for topics across all of 
mechanics and electricity 
and magnetism.
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Show connections between physics and the real world as students learn to apply 
physics concepts via enhanced media

www.MasteringPhysics.com

NEW! End-of-chapter problem 
types and 15% new questions 
and problems include multiple 
choice with multiple correct answers, 
find-a-pattern in data presented 
in a video or a table, ranking 
tasks, evaluate statements/claims/
explanations/measuring procedures, 
evaluate solutions, design a device or a 
procedure that meets given criteria, and 
linearization problems. End-of-chapter 
problems have undergone careful 
analysis using Mastering Physics usage 
data to provide fine-tuned difficulty 
ratings and to produce a more varied, 
useful, and robust set of end-of-chapter 
problems.

NEW! Direct 
Measurement Videos 
are short videos that show 
real situations of physical 
phenomena. Grids, rulers, 
and frame counters appear as 
overlays, helping students to 
make precise measurements 
of quantities such as position 
and time. Students then 
apply these quantities along 
with physics concepts to 
solve problems and answer 
questions about the motion 
of the objects in the video.
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Give students fingertip access  
to interactive tools

Learning Catalytics™ helps generate class 
discussion, customize lectures, and promote peer-
to-peer learning with real-time analytics. Learning 
Catalytics acts as a student response tool that uses 
students’ smartphones, tablets, or laptops to engage 
them in more interactive tasks and thinking.

NEW! Pearson eText, optimized 
for mobile, seamlessly integrates videos 
such as the Observational Experiment 
Tables and other rich media with the 
text and gives students access to their 
textbook anytime, anywhere. Pearson 
eText is available with Mastering Physics 
when packaged with new books or as an 
upgrade students can purchase online.EXPLORE 

and APPLY

 Etkina

Planinsic

Van Heuvelen

s e c o n d  e d i t i o n

COLLEGE 

PHYSICS

•  �NEW! Upload a full 
PowerPoint® deck for 
easy creation of slide 
questions.

•  �NEW! Team names are 
no longer case sensitive.

•  �Help your students 
develop critical thinking 
skills.

•  �Monitor responses to find 
out where your students 
are struggling.

•  �Rely on real-time data 
to adjust your teaching 
strategy.

•  �Automatically group 
students for discussion, 
teamwork, and peer-to-
peer learning.
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Preface

To the student
College Physics: Explore and Apply is more than just a book. It’s 
a learning companion. As a companion, the book won’t just tell 
you about physics; it will act as a guide to help you build physics 
ideas using methods similar to those that practicing scientists use 
to construct knowledge. The ideas that you build will be yours, 
not just a copy of someone else’s ideas. As a result, the ideas of 
physics will be much easier for you to use when you need them: 
to succeed in your physics course, to obtain a good score on 
exams such as the MCAT, and to apply to everyday life.

Although few, if any, textbooks can honestly claim to be a 
pleasure to read, College Physics: Explore and Apply is designed 
to make the process interesting and engaging. The physics you 
learn in this book will help you understand many real-world 
phenomena, from why giant cruise ships are able to float to how 
telescopes work. The cover of the book communicates its spirit: 
you learn physics by exploring the natural world and applying it 
in your everyday life.

A great deal of research has been done over the past few 
decades on how students learn. We, as teachers and researchers, 
have been active participants in investigating the challenges stu-
dents face in learning physics. We’ve developed unique strategies 
that have proven effective in helping students think like physi-
cists. These strategies are grounded in active learning with your 
peers—deliberate, purposeful action on your part to learn some-
thing new. For learning to happen, one needs to talk to others, 
share ideas, listen, explain, and argue. It is in these deliberations 
that new knowledge is born. Learning is not passively memoriz-
ing so that you can repeat it later. When you learn actively, you 
engage with the material and—most importantly—share your 
ideas with others. You relate it to what you already know and 
benefit from the knowledge of your peers. You think about the 
material in as many different ways as you can. You ask yourself 
questions such as “Why does this make sense?” and “Under what 
circumstances does this not apply?” Skills developed during this 
process will be the most valuable in your future, no matter what 
profession you choose.

This book (your learning companion) includes many tools 
to support the active learning process: each problem-solving 
tool, worked example, observational experiment table, testing 
experiment table, review question, and end-of-chapter question 
and problem is designed to help you build your understanding of 
physics. To get the most out of these tools and the course, stay 
actively engaged in the process of developing ideas and applying 
them; form a learning group with your peers and try to work on 
the material together. When things get challenging, don’t give up.

At this point you should turn to Chapter 1, Introducing 
Physics, and begin reading. That’s where you’ll learn the details 
of the approach that the book uses, what physics is, and how to be 
successful in the physics course you are taking.

To the instructor
Welcome to the second edition of College Physics: Explore and 
Apply and its supporting materials (MasteringTM Physics, the 
Active Learning Guide (ALG), and the Instructor’s Guide), a 
coherent learning system that helps our students learn physics as 
an ongoing process rather than a static set of established concepts 
and mathematical relations. It is based on a framework known 
as ISLE (the Investigative Science Learning Environment). This 
framework originated in the work of Eugenia Etkina in the early 
1990s. She designed a logical progression of student learning of 
physics that mirrors the processes in which physicists engage 
while constructing and applying knowledge. This progression 
was enriched in the early 2000s when Alan Van Heuvelen added 
his multiple representation approach. While logical flow repre-
sents a path for thinking, multiple representations are thinking 
tools. Since 2001, when ISLE curriculum development began, 
tens of thousands of students have been exposed to it as hun-
dreds of instructors used the materials produced by the authors 
and their collaborators. Research on students learning physics 
through ISLE has shown that these students not only master the 
content of physics, but also become expert problem solvers, can 
design and evaluate their own experiments, communicate, and 
most importantly see physics as a process based on evidence as 
opposed to a set of rules that come from the book.

Experiments, experiments… The main feature of this system is 
that students practice developing physics concepts by following 
steps similar to those physicists use when developing and 
applying knowledge. The first introduction to a concept or a 
relation happens when students observe simple experiments 
(called observational experiments). Students learn to analyze 
these experiments, find patterns (either qualitative or quantitative) 
in the data, and develop multiple explanations for the patterns or 
quantitative relations. They then learn how to test the explanations 
and relations in new testing experiments. Sometimes the out-
comes of the experiments might cause us to reject the explana-
tions; often, they help us keep them. Students see how scientific 
ideas develop from evidence and are tested by evidence, and how 
evidence sometimes causes us to reject the proposed explanations. 
Finally, students learn how tested explanations and relations are 
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first edition was already well aligned with educational reforms, 
but the second edition strengthens this alignment even further.

We have therefore made the following global changes to the 
textbook, in addition to myriad smaller changes to individual 
chapters and elements:

●● An enhanced experiential approach, with more experiment  
videos and photos (all created by the authors) and an updated 
and more focused and effective set of experiment tables, 
strengthens and improves the core foundation of the first 
edition. Approximately 150 photos and 40 videos have been 
added to the textbook, and even more to the ALG.

●● An expanded introductory chapter (now Chapter 1) gives 
students a more detailed explanation of “How to use this 
book” to ensure they get the most out of the chapter features, 
use them actively, and learn how to think critically.

●● Integration of vector arithmetic in early chapters allows 
students to develop vector-related skills in the context of 
learning physics, rather than its placement in an appendix in 
the first edition.

●● Earlier placement of waves and oscillations allows 
instructors to teach these topics with mechanics if preferred. 
Coverage with optics is also still possible.

●● Significant new coverage of capacitors, AC circuits, and 
LEDs (LEDs now permeate the whole book) expand the 
real-world and up-to-date applications of electricity.

●● Other new, revised, or expanded topics include friction, 2-D 
collisions, energy, bar charts for rotational momentum and 
nuclear energy, ideal gas processes, thermodynamic engines, 
semiconductors, velocity selectors, and spacetime diagrams in 
special relativity.

●● Applications are integrated throughout each chapter, rather 
than being grouped in the “Putting it all together” sections of 
the first edition, in order to optimize student engagement.

●● Problem-solving guidance is strengthened by the careful 
revision of many Problem-Solving Strategy boxes and the 
review of each chapter’s set of worked examples. The first 
edition Reasoning Skill boxes are renamed Physics Tool Boxes 
to better reflect their role; many have been significantly revised.

●● Streamlined text, layout, and figures throughout the book 
enhance the focus on central themes and topics, eliminat-
ing extraneous detail. The second edition has over 150 fewer 
pages than the first edition, and the art program is updated 
with over 450 pieces of new or significantly revised art.

●● 21st-century skills incorporated into many new worked 
examples and end-of-chapter problems include data 
analysis, evaluation, and argumentation. Roughly 15% of all 
end-of-chapter questions and problems are new.

●● Careful analysis of Mastering Physics usage data provides 
fine-tuned difficulty ratings and a more varied, useful, and 
robust set of end-of-chapter problems.

●● A fresh and modern design provides a more transparent 
hierarchy of features and navigation structure, as well as 
an engaging chapter-opening page and streamlined chapter 
summary.

applied for practical purposes and in problem solving. This is the 
process behind the subtitle of the book.

Explore and apply To help students explore and apply physics, 
we introduce them to tools: physics-specific representations, such 
as motion and force diagrams, momentum and energy bar charts, 
ray diagrams, and so forth. These representations serve as bridges 
between words and abstract mathematics. Research shows that 
students who use representations other than mathematics to solve 
problems are much more successful than those who just look for 
equations. We use a representations-based problem-solving strategy 
that helps students approach problem solving without fear and even-
tually develop not only problem-solving skills, but also confidence. 
The textbook and ALG introduce a whole library of novel problems 
and activities that help students develop competencies necessary for 
success in the 21st century: argumentation, evaluation, estimation, 
and communication. We use photo and video analysis, real-time 
data, and real-life situations to pose problems.

A flexible learning system There are multiple ways to use our 
learning system. Students can work collaboratively on ALG 
activities in class (lectures, labs, and problem-solving sessions) 
and then read the textbook and solve end-of-chapter problems at 
home, or they can first read the text and do the activities using 
Mastering Physics at home, then come to class and discuss their 
ideas. However they study, students will see physics as a living 
thing, a process in which they can participate as equal partners.

The key pedagogical principles of this book are described 
in detail in the first chapter of the Instructor’s Guide that 
accompanies College Physics—please read that chapter. It 
elaborates on the implementation of the methodology that we 
use in this book and provides guidance on how to integrate the 
approach into your course.

While our philosophy informs College Physics, you need 
not fully subscribe to it to use this textbook. We’ve organized the 
book to fit the structure of most algebra-based physics courses: 
we begin with kinematics and Newton’s laws, then move on to 
conserved quantities, statics, vibrations and waves, gases, fluids, 
thermodynamics, electricity and magnetism, optics, and finally 
modern physics. The structure of each chapter will work with 
any method of instruction. You can assign all of the innovative 
experimental tables and end-of-chapter problems, or only a few. 
The text provides thorough treatment of fundamental principles, 
supplementing this coverage with experimental evidence, new 
representations, an effective approach to problem solving, and 
interesting and motivating examples.

New to this edition
There were three main reasons behind the revisions in this second 
edition. (1) Users provided lots of feedback and we wanted to 
respond to it. (2) We (the authors) grew and changed, and learned 
more about how to help students learn, and our team changed—
we have a new co-author, who is an expert in educational physics 
experiments and in the development of physics problems.  
(3) Finally, we wanted to respond to changes in the world (new 
physics discoveries, new technology, new skills required in the 
workplace) and to changes in education (the Next Generation 
Science Standards, reforms in the AP and MCAT exams). Our 
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The Instructor Resource Materials (ISBN 0-134-87386-6)  
on the Mastering Physics Instructor Resources page provide 
invaluable and easy-to-use resources for your class, organized by 
textbook chapter. The contents include a comprehensive library 
of all figures, photos, tables, and summaries from the textbook 
in JPEG and PowerPoint formats. A set of editable Lecture 
Outlines, Open-Ended Questions, and Classroom Response 
System “Clicker” Questions in PowerPoint will engage your 
students in class. Also included among the Instructor Resource 
Materials are the Test Bank, Instructor Solutions Manual, 
Active Learning Guide, Active Learning Guide Solutions 
Manual, and Instructor Guide.

MasteringTM Physics is the leading online homework, tutorial, 
and assessment platform designed to improve results by engaging 
students with powerful content. All Mastering resources, content, 
and tools are easy for both students and instructors to access in one 
convenient location. Instructors ensure that students arrive ready to 
learn by assigning educationally effective content before class and 
encourage critical thinking and retention with in-class resources 
such as Learning CatalyticsTM. Students can master concepts after 
class through traditional and adaptive homework assignments that 
provide hints and answer-specific feedback. The Mastering grade-
book records scores for all automatically graded assignments in one 
place, while diagnostic tools give instructors access to rich data to 
assess student understanding and misconceptions.

New for the second edition of this book, Mastering Physics 
includes activities for students to do before coming to class, as 
an alternative to working through the Active Learning Guide 
activities prior to reading the textbook. These activities focus stu-
dents’ attention on observational experiments, helping them learn 
to identify patterns in the data, and on testing experiments, helping 
them learn how to make a prediction of an outcome of an experi-
ment using an idea being tested, not personal intuition. Both skills 
are very important in science, but are very difficult to develop.

The significantly revised Instructor’s Solutions Manual, 
provided as PDFs and editable Word files, gives complete solu-
tions to all end-of chapter questions and problems using the text-
book’s problem-solving strategy.

The Test Bank, which has also been significantly revised, 
contains more than 2000 high-quality problems, with a range of 
multiple-choice, true/false, short-answer, and regular homework-
type questions. Test files are provided in TestGen® (an easy-to-
use, fully networkable program for creating and editing quizzes 
and exams), as well as PDF and Word format.

Student supplements
Physics experiment videos, accessed via the 
eText, with a smartphone through this QR 
code, at https://goo.gl/s2MerO, or online in the 
Mastering Physics Study Area, accompany most 
of the Observational and Testing Experiment 

Tables, as well as other discussions and problems in the text-
book and in the ALG. Students can observe the exact experiment 
described in the text.

The Pearson eText, optimized for mobile, seamlessly 
integrates videos and other rich media with the text and 
gives students access to their textbook anytime, anywhere.

The Instructor’s Guide (ISBN 0-134-89031-0), written by 
Eugenia Etkina, Gorazd Planinsic, David Brookes, and Alan 
Van Heuvelen, walks you through the innovative approaches 
they take to teaching physics. Each chapter of the Instructor’s 
Guide contains a roadmap for assigning chapter content, Active 
Learning Guide assignments, homework, and videos of the 
experiments. In addition, the authors call out common pitfalls to 
mastering physics concepts and describe techniques that will help 
your students identify and overcome their misconceptions. Tips 
include how to manage the complex vocabulary of physics, when 
to use classroom response tools, and how to organize lab, lecture, 
and small-group learning time. Drawing from their extensive 
experience as teachers and researchers, the authors give you the 
support you need to make College Physics work for you.

The Active Learning Guide workbook (ISBN  
0-134-60549-7) by Eugenia Etkina, David Brookes, Gorazd 
Planinsic, and Alan Van Heuvelen consists of carefully crafted 
cycles of in-class activities that provide an opportunity for stu-
dents to conduct observational experiments, find patterns, 
develop explanations, and conduct the testing experiments for 
those explanations described in the textbook before they read 
it. These learning cycles are interspersed with “pivotal” activi-
ties that serve different purposes: (a) to introduce and familiarize 
students with new representational techniques, (b)  to give stu-
dents practice with representational techniques, (c)  to directly 
address ideas that we know students struggle with (the goal is to 
encourage that struggle so that students reach a resolution either 
through their own discussion or by the instructor giving a “time 
for telling” lecture at the end of the activity), and (d) to provide 
scaffolding for students to work through an example or a passage 
in the textbook. The ALG also contains multiple experiments that 
can be used in labs. Whether the activities are assigned or not, 
students can always use this workbook to reinforce the concepts 
they have read about in the text, to practice applying the concepts 
to real-world scenarios, or to work with sketches, diagrams, and 
graphs that help them visualize the physics. The ALG is down-
loadable to share with your class; you may also talk to your sales 
representative about printing a custom version for your students.

TIP All of the following materials are available for 
download on the Mastering Physics Instructor 

Resources page.

●● A significantly revised Active Learning Guide is better 
integrated with the textbook, following the section sequence, 
and emphasizes collaboration, scientific reasoning, and 
argumentation.

All of the above sounds like a lot of work—and it was! But 
it was also lots of fun: we took photos of juice bottles sinking in 
the snow, we chased flying airplanes and running water striders, 
we drove cars with coffee cups on dashboards. Most exciting was 
our trip to a garbage plant to study and photograph the operation 
of an eddy current waste separator. Working on this new edition 
has enriched our lives, and we hope that using our textbook will 
enrich the lives of your students!

Instructor supplements

VIDEO
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describe how grateful we are to have Paul Bunson on our team. 
Paul helped us with the end-of-chapter problem revisions and 
Mastering Physics and ALG activities, and provided many helpful 
suggestions, particularly on rotational mechanics, fluids, relativity, 
and quantum optics. In addition, he was the first to adopt the text-
book even before the first edition was officially printed and since 
then has remained a vivid advocate and supporter of ISLE. We are 
indebted to Charlie Hibbard, who checked and rechecked every 
fact and calculation in the text. Brett Kraabel prepared detailed 
solutions for every end-of-chapter problem for the Instructor’s 
Solutions Manual. We also want to thank all of the reviewers, in 
particular Jeremy Hohertz, who put their time and energy to pro-
viding thoughtful, constructive, and supportive feedback. We thank 
Matt Blackman for adding excellent problems to the Test Bank, 
Katerina Visnjic for her support of ISLE and the idea to expand 
energy bar charts to nuclear physics, and Mikhail Kagan for timely 
feedback. Our special thanks go to Lane Seeley for his thoughtful 
review of the energy chapter, which led to its deep revision. We 
thank Diane Jammula and Jay Pravin Kumar, who not only became 
avid supporters and users of ISLE but also helped create instruc-
tor resources for the second edition. We thank Ales Mohoric and 
Sergej Faletic for their suggestions on problems.

Our infinite thanks go to Xueli Zou, the first adopter of 
ISLE, and to Suzanne Brahmia, who came up with the Investi-
gative Science Learning Environment acronym “ISLE” and was 
and is an effective user and tireless advocate of the ISLE learning 
strategy. Suzanne’s ideas about relating physics and mathematics 
are reflected in many sections of the book. We are indebted to 
David Brookes, another tireless ISLE developer, whose research 
shaped the language we use. We thank all of Eugenia’s students 
who are now physics teachers for providing feedback and ideas 
and using the book with their students.

We have been very lucky to belong to the physics teaching 
community. Ideas of many people in the field contributed to our 
understanding of how people learn physics and what approaches 
work best. These people include Arnold Arons, Fred Reif, Jill 
Larkin, Lillian McDermott, David Hestenes, Joe Redish, Stamatis  
Vokos, Jim Minstrell, David Maloney, Fred Goldberg, David 
Hammer, Andy Elby, Noah Finkelstein, David Meltzer, David 
Rosengrant, Anna Karelina, Sahana Murthy, Maria Ruibal-
Villasenhor, Aaron Warren, Tom Okuma, Curt Hieggelke, and 
Paul D’Alessandris. We thank all of them and many others.

Personal notes from the authors
We wish to thank Valentin Etkin (Eugenia’s father), an experimen-
tal physicist whose ideas gave rise to the ISLE philosophy many 
years ago, Inna Vishnyatskaya (Eugenia’s mother), who never 
lost faith in the success of our book, and Dimitry and Alexander 
Gershenson (Eugenia’s sons), who provided encouragement to 
Eugenia over the years. While teaching Alan how to play violin, 
Alan’s uncle Harold Van Heuvelen provided an instructional 
system very different from that of traditional physics teaching. 
In  Harold’s system, many individual abilities (skills) were 
developed with instant feedback and combined over time to 
address the process of playing a complex piece of music. We tried 
to integrate this system into our ISLE physics learning system.

—Eugenia Etkina, Gorazd Planinsic, and Alan Van Heuvelen

●● The Pearson eText mobile app offers offline access and can be 
downloaded for most iOS and Android phones/tablets from the 
Apple App Store or Google Play

●● Accessible (screen-reader ready)

●● Configurable reading settings, including resizable type and 
night reading mode

●● Instructor and student note-taking, highlighting, bookmarking, 
and search

The Student Solutions Manual (ISBN 0-134-88014-5) 
gives complete solutions to select odd-numbered end-of-chapter 
questions and problems using the textbook’s problem-solving 
strategy.

In addition to content assigned by the instructor and this 
text’s accompanying experiment videos, MasteringTM Physics 
also provides a wealth of self-study resources:

●● Dynamic Study Modules assess student performance and 
activity in real time. They use data and analytics that person-
alize content to target each student’s particular strengths and 
weaknesses. DSMs can be accessed from any computer, tablet, 
or smart phone.

●● PhET simulations from the University of Colorado, Boulder 
are provided in the Mastering Physics Study Area to allow 
students to explore key concepts by interacting with these 
research-based simulations.

●● 24 ,7 access to online tutors* enables students to work 
one-on-one, in real time, with a tutor using an interactive 
whiteboard. Tutors will guide them through solving their 
problems using a problem-solving-based teaching style to help 
them learn underlying concepts. In this way, students will be 
better prepared to handle future assignments on their own.
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1

In everyday life, a model of something (such as a model airplane or a model train) 
is usually a smaller, simpler, or idealized version of the original. An architect 
creates a model to show a building’s essential elements and context. Physicists 
do something similar, but it might surprise you to hear that in physics, a marble 
is  a very useful model of an airplane, a car, or the Moon. Read on and you will 
learn why.

WHETHER YOU’VE STUDIED ANY physics before or not, it’s helpful to take 
a step back and consider what physics is about and how physicists think 
about things. You’ll find that learning to analyze problems like a physicist 
will help you not only in this course, but also in others (and in life in gen-
eral). This book is designed to help you do this, and this chapter will give 
you an overview of how to use this book to your best advantage.

1 

Introducing Physics

●● What are physics models?

●● How is the word “law” used differently 
in physics than in the legal system?

●● How do we solve physics problems 
such as determining the minimum 
runway length needed for an airplane?
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2    CHAPTER 1  Introducing Physics

1.1  What is physics?
Physics is a fundamental experimental science encompassing subjects such as motion, 
waves, light, electricity, magnetism, atoms, and nuclei. Knowing physics allows you 
to understand many aspects of the world, from why bending over to lift a heavy load 
can injure your back to why Earth’s climate is changing. Physics explains the very 
small—atoms and subatomic particles—and the very large—planets, galaxies, and 
black holes.

In each chapter of this textbook, we will apply our knowledge of physics to other 
fields of science and technology such as biology, medicine, geology, astronomy, archi-
tecture, engineering, agriculture, and anthropology. For instance, you will learn about 
techniques used by archeologists to determine the age of bones (Figure 1.1), about 
electron microscopes and airport metal detectors, and why high blood pressure indi-
cates problems with the circulatory system.

In this book we will concentrate not only on developing an understanding of the 
important basic laws of physics but also on the processes that physicists employ to dis-
cover and use these laws. The processes (among many) include:

●● Collecting and analyzing experimental data.
●● Making explanations and experimentally testing them.
●● Creating different representations (pictures, graphs, bar charts, etc.) of physical 
processes.

●● Finding mathematical relations—mathematical models—between different 
variables.

●● Testing those relations in new experiments.

The search for rules
Physicists search for general rules, or laws, that bring understanding to the chaotic 
behavior of our surroundings. In physics the word law means a causal mathematical 
relation between variables inferred from the data or through some reasoning process. 
Causal relations show how change in one quantity affects the change in another quan-
tity, but they do not explain why such causation occurs. The laws, once discovered, 
often seem obvious, yet their discovery usually requires years of experimentation and 
theorizing. Despite being called “laws,” they are temporary in the sense that new infor-
mation often leads to their modification, revision, and, in some cases, abandonment.

For example, in 200 B.C. Apollonius of Perga watched the Sun and the stars moving 
in arcs across the sky and adopted the concept that Earth occupied the center of a 
revolving universe. Three hundred years later, Ptolemy developed a detailed model to 
explain the complicated motion of the planets in that Earth-centered universe. Ptolemy’s 
model, which predicted with surprising accuracy the changing positions of the planets, 
was accepted for the next 1400 years. However, as the quality of observations improved, 
discrepancies between the predictions of Ptolemy’s model and the real positions of the 
planets became bigger and bigger. A new model was needed. Copernicus, who studied 
astronomy around the time that Columbus sailed to America, developed a model of 
motion for the heavenly bodies in which the Sun resided at the center of the universe 
while Earth and the other planets moved in orbits around it. More than 100 years later 
the model was revised by Johannes Kepler and later supported by careful experiments 
by Galileo Galilei. Finally, 50 years after Galileo’s death, Isaac Newton formulated 
three simple laws of motion and the universal law of gravitation, which together pro-
vided a successful explanation for the orbital motion of Earth and the other planets. 
These laws also allowed us to predict the positions of new planets, which at the time 
were not yet known. Newton’s work turned the heliocentric model into the theory of 
gravitation. For nearly 300 years Newtonian theory went unaltered until Albert Einstein 
made several profound improvements to our understanding of motion and gravitation at 
the beginning of the 20th century.

FIGURE 1.1  Archaeologists applied principles 
from physics to determine that this skeleton of 
Australopithecus afarensis, nicknamed “Lucy,” 
lived about 3.2 million years ago.
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1.1  What is physics?    3

Newton’s inspiration provided not only the basic resolution of the 1800-year-old 
problem of the motion of the planets but also a general framework for analyzing the 
mechanical properties of nature (Figure 1.2). Newton’s simple laws give us the under-
standing needed to guide rockets to the Moon, to build skyscrapers, and to lift heavy 
objects safely without injury.

It is difficult to appreciate the great struggles our predecessors endured as they 
developed an understanding that now seems routine. Today, similar struggles occur 
in most branches of science, though the questions being investigated have changed. 
How does the brain work? What causes Earth’s magnetism? What is the nature of the 
pulsating sources of X-ray radiation in our galaxy? Is the recently discovered acceler-
ated expansion of the universe really caused by a mysterious “dark energy,” or is our 
interpretation of the observations of distant supernovae that revealed the acceleration 
incomplete?

The processes for devising and using new models
Physics is an experimental science. To answer questions, physicists do not just think 
and dream in their offices but constantly engage in experimental investigations. 
Physicists use special measuring devices to observe phenomena (natural and planned), 
describe their observations (carefully record them using words, numbers, graphs, etc.), 
find repeating features called patterns (for example, the distance traveled by a falling 
object is directly proportional to the square of the time in flight), and then try to explain 
these patterns. By doing this, physicists describe and answer the questions of “why” or 
“how” the phenomena happened and then deduce quantitative rules called mathemati-
cal models that explain the phenomena.

However, a deduced explanation or a mathematical model is not automatically 
accepted as true. Every model needs to undergo careful testing. When physicists test 
a model, they use the model to predict the outcomes of new experiments. As long as 
there is no experiment whose outcome is inconsistent with predictions made using the 
model, it is not disproved. However, a new experiment could be devised tomorrow 
whose outcome is not consistent with the prediction made using the model. The point is 
that there is no way to “prove” a model once and for all. At best, the model just hasn’t 
been disproven yet.

A simple example will help you understand some processes that physicists follow 
when they study the world. Imagine that you walk into the house of your acquaintance 
Bob and see 10 tennis rackets of different quality and sizes. This is an 
observational experiment. During an observational experiment a scientist collects 
data that seem important. Sometimes it is an accidental or unplanned experiment. The 
scientist has no prior expectation of the outcome. In this case the number of tennis 
rackets and their quality and sizes represent the data. Having so many tennis rackets 
seems unusual to you, so you try to explain the data you collected (or, in other words, to 
explain why Bob has so many rackets) by devising several hypotheses. A hypothesis is 
an explanation that usually is based on some mechanism that is behind what is going 
on, or it can be a mathematical model describing the phenomenon. One hypothesis is 
that Bob has lots of children and they all play tennis. A second hypothesis is that Bob 
makes his living by fixing tennis rackets. A third hypothesis is that he is a thief who 
steals tennis rackets.

How do you decide which hypothesis is correct? You may reason: if Bob has many 
children who play tennis, and I walk around the house checking the sizes of clothes 
that I find, then I will find clothes of different sizes. Checking the clothing sizes is a 
new experiment, called a testing experiment. A testing experiment is different from 
an observational experiment. In a testing experiment, a specific hypothesis is being 
“put on trial.” This hypothesis is used to construct a clear expectation of the outcome 
of the experiment. This clear expectation (based on the hypothesis being tested) is 
called a prediction. So you conduct the testing experiment by walking around the 
house checking the closets. You do find clothes of different sizes. This is the outcome 
of your testing experiment. Does it mean for absolute certain that Bob has the rackets 

TIP Notice the difference between 
a hypothesis and a prediction. A 

hypothesis is an idea that explains why or 
how something that you observe happens. 
A prediction is a statement of what should 
happen in a particular experiment if the 
hypothesis being tested were true. The 
prediction is based on the hypothesis 
and cannot be made without a specific 
experiment in mind.

FIGURE 1.2  Thanks to Newton, we can explain 
the motion of the Moon. We can also build 
skyscrapers.
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4    CHAPTER 1  Introducing Physics

because all of his children play tennis? No; he could still be a racket repairman or 
a thief. Therefore, if the outcome of the testing experiment matches the prediction 
based on your hypothesis, you cannot say that you proved the hypothesis. All you can 
say is that you failed to disprove it. However, if you walk around the house and do 
not find any children’s clothes, you can say with more confidence that the number of 
rackets in the house is not due to Bob having lots of children who play tennis. Still, 
this conclusion would only be valid if you made an assumption: Bob’s children live 
in the house and wear clothes of different sizes. Generally, in order to reject a hypoth-
esis you need to check the additional assumptions you made and determine if they are 
reasonable.

Imagine you have rejected the first hypothesis (you didn’t find any children’s 
clothes). Next you wish to test the hypothesis that Bob is a thief. This is your reasoning: 
If Bob is a thief (the hypothesis), and I walk around the house checking every drawer 
(the testing experiment), then I will not find any receipts for the tennis rackets (the 
prediction). You perform the experiment and you find no receipts. Does it mean that 
Bob is a thief? He might just be a disorganized father of many children or a busy 
repairman. However, if you find all of the receipts, you can say with more confidence 
that he is not a thief (but he could still be a repairman). Thus it is possible to disprove 
(rule out) a hypothesis, but it is not possible to prove it once and for all. The process 
that you went through to create and test your hypotheses is depicted in Figure 1.3. 
At the end of your investigation you might be left with a hypothesis that you failed to 
disprove. As a physicist you would now have some confidence in this hypothesis and 
start using it for practical applications.

Using this textbook you will learn physics by following a process similar to that 
described above. The section “How to use this book to learn physics” at the end of this 
chapter will explain how to master this process.

Physicists use words and the language of mathematics to express ideas about the 
world. But they also represent these ideas and the world itself in other ways—sketches, 
diagrams, and even cut-out paper models (James Watson made a paper model of DNA 
when trying to determine its structure). In physics, however, the ultimate goal is to 
understand the mechanisms behind physical phenomena and to devise mathematical 
models that allow for quantitative predictions of new phenomena. Thus, a big part of 
physics is identifying measurable properties of the phenomena (such as mass, speed, 
and force), collecting quantitative data, finding the patterns in that data, and creating 
mathematical models representing relations between the quantities.

How will learning physics change your 
interactions with the world?
Even if you do not plan on becoming a professional physicist, learning physics can 
change the way you think about the world. For example, why do you feel cold when 
you wear wet clothes? Why is it safe to sit in a car during a lightning storm? Knowing 
physics will also help you understand what underlies many important technologies. 
How can a GPS know your present position and guide you to a distant location? How 
do power plants generate electric energy?

Studying physics is also a way to acquire the processes of knowledge construc-
tion, which will help you make decisions based on evidence rather than on personal 
opinions. When you hear an advertisement for a shampoo claim it will make your hair 
97.5% stronger, you will ask: How do they know this? Did this number come from an 
experiment? If it did, was it tested? What assumptions did they make? Did they con-
trol for food consumed, exercise, air quality, etc.? Understanding physics will help you 
differentiate between actual evidence and unsubstantiated claims. For instance, before 
you accept a claim, you might ask about the data supporting the claim, what experi-
ments were used to test the idea, and what assumptions were made. Thinking critically 
about the messages you hear will change the way you make decisions as a consumer 
and a citizen.

FIGURE 1.3  Science is a cyclical process for 
creating and testing knowledge.

OBSERVATIONAL
EXPERIMENTS

E
X

P
L

O
R

E
A

P
P

LY

Hypotheses
(explanations)Revise

Testing
experiment

Di	erent

If not, check
assumptions

Find a pattern

Design a test
and make 
predictions

If yes

More

More
testing

Does the
outcome match
the prediction?

Application
experiments

M01_ETKI1823_02_SE_C01.indd   4 23/10/17   5:52 PM



1.2  Modeling    5

1.2  Modeling
You already met the word “model” in this chapter. In this section we will learn more 
about this term. Physicists study how the complex world works. To start the study of 
some aspect of that world, they often begin with a simplified version. Consider how 
you move your body when you walk. Your back foot on the pavement lifts and swings 
forward, only to stop for a short time when it again lands on the pavement, now ahead 
of you. Your arms swing back and forth. The trunk of your body moves forward stead-
ily. Your head also moves forward but bobs up and down slightly. It would be very 
difficult to start our study of motion by analyzing all these complicated parts and move-
ments. Thus, physicists create in their minds simplified representations, called models, 
of physical phenomena and then think of the phenomena in terms of those models. 
Physicists begin with very simple models and then add complexity as needed to investi-
gate more detailed aspects of the phenomena.

A simplified object
To simplify real objects, physicists often neglect both the dimensions of objects 
(their sizes) and their structures (the different parts) and instead regard them as single 
point-like objects (Figure 1.4).

Is modeling a real object as a point-like object a good idea? Imagine a 100-m race. 
The winner is the first person to get a body part across the finish line. The judge needs 
to observe the movement of all body parts (or a photo of the parts) across a very small 
distance near the finish line to determine who had the fastest time. Here, that very small 
distance near the finish line is small compared to the size of the human body. This is a 
situation where modeling the runners as point-like objects is not reasonable. However, 
if you are interested in how long it takes an average person to run 100 m, then the 
movement of different body parts is not as important, since 100 m is much larger than 
the size of a runner. In this case, the runners can be modeled as point-like objects. Even 
though we are talking about the same situation (a 100-m race), the aspect of the situa-
tion that interests us determines how we choose to model the runners.

Consider an airplane landing on a runway (Figure 1.5a). We want to determine 
how long it takes for it to stop. Since all of its parts move together, the part we study 
does not matter. In that case it is reasonable to model the airplane as a point-like 
object. However, if we want to build a series of gates for planes to unload passengers 
(Figure 1.5b), then we need to consider the motion of the different parts of the airplane. 
For example, there must be enough room for an airplane to turn while maneuvering into 
and out of the gate. In this case the airplane cannot be modeled as a point-like object.

FIGURE 1.4  Physicists often model complex 
structures as point-like objects.

FIGURE 1.5  An airplane can be considered a 
point-like object (a) when landing, but not  
(b) when parking.

(a)

 

(b)

Point-like object  A point-like object is a simplified representation of a real 
object. As a rule of thumb, you can model a real object as a point-like object when 
one of the following two conditions is met: (a) when all of its parts move in the 
same way, or (b) when the object is much smaller than the other relevant lengths 
in the situation. The same object can be modeled as a point-like object in some 
situations but not in others.

Modeling
The process that we followed to decide when a real object could be considered a point-
like object is an example of what is called modeling. The modeling of objects is the first 
step that physicists use when they study natural phenomena. In addition to simplifying the 
objects that they study, scientists simplify the interactions between objects and also the 
processes that are occurring in the real world. Then they add complexity as their under-
standing grows. Galileo Galilei is believed to be the first scientist to consciously model a 
phenomenon. In his studies of falling objects in the early 17th century, he chose to sim-
plify the real phenomenon by ignoring the interactions of the falling objects with the air.

We can ignore the chassis flexing and the driver 
moving and model this racecar as a point-like object 
in order to study its motion.
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6    CHAPTER 1  Introducing Physics

TABLE 1.1  Power of 10 prefixes

Prefix Abbreviation Value

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Hecto h 102

Deka da 101

Deci d 10-1

Centi c 10-2

Milli m 10-3

Micro m 10-6

Nano n 10-9

Pico p 10-12

Femto f 10-15

TABLE 1.2  Basic SI physical quantities and their units

 
Physical quantity

Unit name  
and symbol

Physical description  
(approximate value)

Time Second, s One second is the time it takes for the heart to 
beat once.

Length Meter, m One meter is the length of one stride.

Mass Kilogram, kg One kilogram is the mass of 1 liter of water.

Electric current Ampere, A One ampere is the electric current through super 
bright white LEDs, such as those used in some 
street lamps.

Temperature Kelvin, K One kelvin degree is the same as 1 degree on 
the Celsius scale or about 2 degrees on the 
Fahrenheit scale. Half a kelvin (about 1 degree 
Fahrenheit) is the smallest temperature dif-
ference that the average person can detect by 
touching (with your hands).

Amount of matter Mole, mol One mole of anything contains 6 * 1023 of the 
units; one mole of oranges contains 6 * 1023 
oranges.

Intensity of light Candela, cd One candela is the intensity of light produced  
by a relatively large candle at a distance of 1 m.

1.3  Physical quantities
To describe physical phenomena quantitatively and model them mathematically, 
physicists construct physical quantities: features or characteristics of phenomena that 
can be determined experimentally, directly or indirectly. Determining the value of a 
physical quantity means comparing the characteristic to an assigned unit (a chosen 
standard).

Units of measure
Physicists describe physical quantities using the SI system, or Le Système international 
d'unités, whose origin goes back to the 1790s when King Louis XVI of France created 
a special commission to invent a new metric system of units. For example, in the SI 
system length is measured in meters. One meter is approximately the distance from 
your nose to the tip of the fingers of your outstretched arm. A long step is about one 
meter. Other units of length are related to the meter by powers of 10 using prefixes 
(milli, kilo, nano, …). These prefixes relate smaller or bigger versions of the same unit 
to the basic unit. For example, 1 millimeter is 0.001 meter; 1 kilometer is 1000 meters. 
The prefixes are used when a measured quantity is much smaller or much larger than 
the basic unit. If the distance is much larger than 1 m, you might want to use the kilo-
meter 1103 m2 instead. The most common prefixes and the powers of 10 to which they 
correspond are given in Table 1.1. In addition to the unit of length, the SI system has 
six other basic units, summarized in Table 1.2.

Modeling  A model is a simplified representation of an object, a system (a group 
of objects), an interaction, or a process. A scientist creating the model decides 
which features to include and which to neglect.

As you see from above, there are different kinds of models. Those important for 
physics are mathematical models of processes. Models allow us to predict future 
phenomena.
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Significant digits
When we measure a physical quantity, the instrument we use and the circumstances 
under which we measure it determine how precisely we know the value of that quantity. 
Imagine that you wear a pedometer (a device that measures the number of steps that 
you take) and wish to determine the number of steps on average that you take per min-
ute. You start walking at 3 p.m. according to your analog watch and stop when it shows 
3:26, and see that the pedometer shows 2254 steps. You divide 2254 by 26 using your 
calculator, and it says 86.692307692307692. If you accept this number, it means that 
you know the number of steps per minute within plus or minus 0.000000000000001 
steps/min. If you accept the number 86.69, it means that you know the number of steps 
to within 0.01 steps/min. If you accept the number 90, it means that you know the num-
ber of steps within 10 steps/min. Which answer should you use?

To answer this question, let’s first focus on the measurements. Although it seems 
that you walked for 26 min, you could have walked for as few as 25 min or for as many 
as 27 min depending on whether you started a little after 3 p.m. or finished a little 
after 3:26. The number 26 does not give us enough information to know the time more 
precisely than that. The time measurement 26 min has two significant digits, or two 
numbers that carry meaning contributing to the precision of the result. The pedometer 
measurement 2254 has four significant digits. Should the result of dividing the number 
of steps by the amount of time you walked have two or four significant digits? If we 
accept four, it means that the number of steps per minute is known more precisely than 
the time measurement in minutes. This does not make sense. The number of significant 
digits in the final answer should be the same as the number of significant digits of the 
quantity used in the calculation that has the smallest number of significant digits. Thus, 
in our example, the average number of steps per minute should be 87. We rounded the 
result given by the calculator to two significant digits. This example shows that when 
we divide (or multiply) one term by another value, the number of significant digits in 
the result cannot be greater than the number of the significant digits in the term that has 
the fewest—in our case, two digits in the time. However, as we add or subtract values, 
the answer cannot have more decimal places than the term with fewest decimal places. 
For example, 30.517 s + 0.3 s = 30.8 s.

Physical quantity  A physical quantity is a feature or characteristic of a physical 
phenomenon that can be measured in some unit. A measuring instrument is used 
to make a quantitative comparison of this characteristic with a unit of measure. 
Examples of physical quantities are your height, your body temperature, the speed 
of your car, and the temperature of air or water.

Table 1.2 provides a “feel” for some of the units but does not say exactly how each 
unit is defined. More careful definitions are important in order that measurements made 
by scientists in different parts of the world are consistent. However, to understand the 
precise definitions of these units, one needs to know more physics. We will learn how 
each unit is precisely defined when we investigate the concepts on which the definition 
is based.

Measuring instruments
Physicists use a measuring instrument to compare the quantity of interest with a stand-
ardized unit. Each measuring instrument is calibrated so that it reads in multiples of 
that unit. Some examples of measuring instruments are a thermometer to measure tem-
perature (calibrated in degrees Celsius or degrees Fahrenheit), a watch to measure time 
intervals (calibrated in seconds), and a meter stick to measure the height of an object 
(calibrated in millimeters). We can now summarize these ideas about physical quanti-
ties and their units.
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8    CHAPTER 1  Introducing Physics

Another issue with significant digits arises when a quantity is reported with no dec-
imal points. For example, how many significant digits does 6500 have—two or four? 
This is where scientific notation helps. Scientific notation means writing numbers 
in terms of their power of 10. For example, we can write 6500 as 6.5 * 103. This 
means that the 6500 actually has two significant digits: 6 and 5. If we write 6500 as 
6.50 * 103, it means 6500 has three significant digits: 6, 5, and 0. The number 6.50 
is more precise than the number 6.5, because it means that you are confident in the 
number to the hundredths place. Scientific notation provides a compact way of writing 
large and small numbers and also allows us to indicate unambiguously the number of 
significant digits a quantity has.

Because we use instruments to measure quantities, we need to connect our knowl-
edge of significant digits to the measurements. When we measure a quantity, we talk 
about precision. The precision of the value of a physical quantity is determined by one 
of two cases.

1.	If the quantity is measured by a single instrument, its precision depends on the 
instrument used to measure it. Figure 1.6 shows how the design of the measuring 
instrument determines its precision.

2.	If the quantity is calculated from other measured quantities, then its precision 
depends on the least precise instrument out of all the instruments used to measure 
a quantity used in the calculation.

1.4  Making rough estimates
Sometimes it is useful to make a rough estimate of a physical quantity to help assess 
a situation or to make a decision. To do this, we use our personal knowledge or expe-
rience to get an approximate numerical value for an unknown quantity. Often the goal 
of the rough estimate is to determine the order of magnitude of the quantity—is it tens, 
hundreds, or thousands of the relevant units? Estimating is an extremely valuable skill 
not only in science but also in everyday life (Figure 1.7).

For example, suppose we want to estimate the amount of drinking water that 
needs to be taken on a passenger airplane for a 4-h flight. We don’t know exactly 
how many passengers are on the plane, but perhaps we assume that there are about 
30 rows of seats with six seats per row. These data allow us to estimate the number of 
passengers: 30 * 6 = 180. After adding the crew and rounding the number, we can 
estimate the number of passengers to be 200. How many cups of water will each pas-
senger drink? Some may drink six, but some only one. It seems reasonable to estimate 
that each person will drink about a cup of water every hour during the flight. There-
fore, during a 4-h flight, 200 people will drink about 800 cups of water. How much 
water is in 1 cup? Again, if we don’t know exactly, we can estimate it to be about 
200 mL (a can of Coke holds about 350 mL). Our final estimation for the amount of 
water needed on the airplane is therefore 160,000 mL, or 160 L. You could argue that 
the airplane might be larger (with, say, 40 rows of eight seats) and that if the flight 
is during the daytime, people might drink more water (say six glasses per person). 
If you repeat the calculation using these new numbers, you will get about 380 L of 
water. This number is larger than our first estimate, but the order of magnitude is the 
same—hundreds of liters.

1.5  Vector and scalar quantities
There are two general types of physical quantities—those that contain information 
about magnitude as well as direction and those that contain magnitude information 
only. Physical quantities that do not contain information about direction are called 
scalar quantities and are written using italic symbols (m, T, etc.). Mass is a scalar 

FIGURE 1.7  In everyday life, rough estimates 
are often sufficient.

FIGURE 1.6  The precision of an instrument is 
determined by one-half of its smallest division. 
The smallest division of this measuring tape is 
1 mm, so the precision is 0.5 mm.

One division 5 1 mm

Half division 5 0.5 mm
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quantity, as is temperature (Figure 1.8). To manipulate scalar quantities, you use stand-
ard arithmetic and algebra rules—you add, subtract, multiply, and divide scalars as 
though they were ordinary numbers.

Physical quantities that contain information about magnitude and direction are 
called vector quantities and are represented by italic symbols with an arrow on top 
1u
F, 

u
v , etc.2. The little arrow on top of the symbol always points to the right. The ac-

tual direction of the vector quantity is shown in a diagram. For example, force is a 
physical quantity with both magnitude and direction (direction is very important if you 
are trying to hammer a nail into the wall). When you push a door, your push can be 
represented with a force arrow on a diagram; the stronger you push, the longer that 
arrow must be. The direction of the push is represented by the direction of that arrow 
(Figure 1.9). The arrow’s direction indicates the direction of the vector, and the arrow’s 
relative length indicates the vector’s magnitude. The methods for manipulating vector 
quantities (adding and subtracting them as well as multiplying a vector quantity by a 
scalar quantity) will be introduced as needed in the following chapters.

1.6  How to use this book to learn physics
The goals of this textbook are to help you construct understanding of some of the most 
important ideas in physics, learn to use physics knowledge to analyze physical phe-
nomena, and develop the general process skills that scientists use in the practice of 
science. One such skill is learning from a scientific text. Thus, by learning to work with 
your textbook efficiently and productively, you will not only learn physics but also de-
velop textbook reading skills that will be helpful in any other science subject you study. 
To take advantage of all the tools that this textbook has to offer, we suggest that you 
read the text below and then, after you work through the first few chapters, come back 
to this section and read it again.

The most important strategy that will help you learn better is called interrogation. 
Interrogation means continually asking yourself the same question when reading the 
text. This question is so important that we put it in the box below:

FIGURE 1.8  Temperature is a scalar quantity; 
it has magnitude, but not direction. However, it 
can be positive or negative.

FIGURE 1.9  The force that your hand exerts 
on a door is a vector quantity represented by 
an arrow.

FHand
   on Door

Why is this true?

Make sure that you ask yourself this question as often as possible so that eventually 
it becomes a habit. Out of all the strategies that are recommended for reading 
comprehension, this is the one that is directly connected to better learning outcomes. 
For example, in Section 1.2 you read the following sentence: “The modeling of objects 
is the first step that physicists use when they study natural phenomena.” Ask yourself, 
“Why is this true?” Possibly because real-life phenomena are too complicated to be 
investigated in detail—it is much easier to describe the motion of a runner if you 
consider her to be a point-like object than to take into account the details of her arms, 
legs, hair, etc. Thus, simplifying, (or as physicists call it, modeling) is the first step that 
we take. By just stopping and interrogating yourself as often as possible about what 
is written in the book you will be able to understand and remember this information 
better.

Textbook features
This textbook has several features that repeat in every chapter. Recognizing these fea-
tures and using them effectively not only will help you learn physics and shorten the 
time that you spend doing so, but also will help you develop good reading habits.
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